AI GROUP
  • About Us
  • Events
  • Jobs
  • Projects
  • Resources
  • Forum
    • Create Topic
  • Share Knowledge
  • Submit your Idea
  • Tutorials
  • Login/Logout
    • Edit Profile
No Result
View All Result
  • About Us
  • Events
  • Jobs
  • Projects
  • Resources
  • Forum
    • Create Topic
  • Share Knowledge
  • Submit your Idea
  • Tutorials
  • Login/Logout
    • Edit Profile
AI Group
No Result
View All Result

Language Model

January 2, 2022
in Papers
  • 2017-11
    • Bengio et al. – 2003 – A neural probabilistic language model [pdf]
    • Press and Wolf – 2016 – Using the output embedding to improve language model [pdf]
  • 2019-02
    • Peters et al. – 2018- Deep contextualized word representations(ELMo) [pdf] [note]
    • Howard and Ruder – 2018 – Universal language model fine-tuning for text classification(ULMFit) [pdf]
    • Radford et al. – 2018 – Improving language understanding by generative pre-training [pdf]
    • Devlin et al. – 2018 – Bert: Pre-training of deep bidirectional transformers for language understanding [pdf]
  • references
    • Blog:The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)
    • ELMo
      • ELMo(AllenNLP)
      • Pre-trained ELMo Representations for Many Languages
    • Quick Start: Training an IMDb sentiment model with ULMFiT
    • finetune-transformer-lm: Code and model for the paper “Improving Language Understanding by Generative Pre-Training”
    • awesome-bert: bert nlp papers, applications and github resources , BERT 相关论文和 github 项目

Machine Translation

  • 2017-12
    • Oda et al. – 2017 – Neural Machine Translation via Binary Code Predict [pdf] [note]
    • Kalchbrenner et al. – 2016 – Neural machine translation in linear time [pdf] [pdf (annotated)] [note]
  • 2018-05
    • Sutskever et al. – 2014 – Sequence to Sequence Learning with Neural Networks [pdf]
    • Cho et al. – 2014 – Learning Phrase Representations using RNN Encoder-Decoder for NMT [pdf]
    • Bahdanau et al. – 2014 – NMT by Jointly Learning to Align and Translate [pdf]
    • Luong et al. – 2015 – Effective Approaches to Attention-based NMT [pdf]
  • 2018-06
    • Gehring et al. – 2017 – Convolutional sequence to sequence learning [pdf]
    • Vaswani et al. – 2017 – Attention is all you need [pdf] [note1:The Illustrated Transformer] [note2:The Annotated Transformer]
  • references
    • OpenNMT-py (in PyTorch)
    • nmt (in TensorFlow)
    • MT-Reading-List

Related Posts

Papers

Text Classification

2017-09 Joulin et al. – 2016 – Bag of tricks for efficient text classification    2017-10 Kim – 2014 – Convolutional neural...

by aigroup
January 2, 2022
Papers

Sentences Matching

2017-12 Hu et al. – 2014 – Convolutional neural network architectures for Matching Natural Language Sentences    2018-07 Nie and Bansal...

by aigroup
January 2, 2022
Papers

Relation Extraction

2018-08 Mintz et al. – 2009 – Distant supervision for relation extraction without labeled data  Zeng et al. – 2015...

by aigroup
January 2, 2022
Papers

Question Answering

2019-05 Rendle S. – 2010 – Factorization machines   Cheng et al. – 2016 – Wide & Deep Learning for Recommender Systems ...

by aigroup
January 2, 2022

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Latest News

Novelty In The Game Of Go Provides Bright Insights For AI And Autonomous Vehicles
AI

Novelty In The Game Of Go Provides Bright Insights For AI And Autonomous Vehicles

by aigroup
January 2, 2022
0

We already expect that humans to exhibit flashes of brilliance. It might not happen all the time, but the act itself is...

Read more

AI for the Life Sciences: A Consultant Weighs In on Best Practices

With Machine Learning, More Business Processes Will be Automated

AI Analysis of Bird Songs Helping Scientists Study Bird Populations and Movements

Executive Interview: Chuck Brooks, Cybersecurity Expert

Latest Jobs

INTERMEDIATE DATA ENGINEER

Python Developer at Torilo Nigeria

Python Data Scientist at eHealth4everyone

Senior Backend Python Developer at SPACE44 GmbH

Full Stack Python / Django Software Engineer at Lendigo Nigeria – Seedstars

Data Scientist (Python) at Spark Wave

Forums

  • Artificial Intelligence
  • Career Path
  • Data Science
  • Job Interview
  • Power BI
  • Python

Recent Topics

  • Learn Machine ALgroithm
  • About us
  • Tutorials
  • Jobs
  • Events
  • Projects
  • Resources

© 2022 AIGroup

No Result
View All Result
  • About Us
  • Events
  • Jobs
  • Projects
  • Resources
  • Forum
    • Create Topic
  • Share Knowledge
  • Submit your Idea
  • Tutorials
  • Login/Logout
    • Edit Profile

© 2025 JNews - Premium WordPress news & magazine theme by Jegtheme.