AI GROUP
  • About Us
  • Events
  • Jobs
  • Projects
  • Resources
  • Forum
    • Create Topic
  • Share Knowledge
  • Submit your Idea
  • Tutorials
  • Login/Logout
    • Edit Profile
No Result
View All Result
  • About Us
  • Events
  • Jobs
  • Projects
  • Resources
  • Forum
    • Create Topic
  • Share Knowledge
  • Submit your Idea
  • Tutorials
  • Login/Logout
    • Edit Profile
AI Group
No Result
View All Result

Underspecification Challenging Machine Learning Modeling

January 2, 2022
in AI
Underspecification Challenging Machine Learning Modeling

With the 2020 US Census results having been delivered to the states, now the process begins for using the population results to draw new Congressional districts. Gerrymandering, a practice intended to establish a political advantage by manipulating the boundaries of electoral districts, is expected to be practiced on a wide scale with Democrats having a slight margin of seats in the House of Representatives and Republicans seeking to close the gap in states where they hold a majority in the legislature.    

Today, more powerful redistricting software incorporating AI and machine learning is available, and it represents a double-edged sword.  

David Thornburgh, president, Committee of Seventy

The pessimistic view is that the gerrymandering software will enable legislators to gerrymander with more precision than ever before, to ensure maximum advantages. This was called “political laser surgery” by David Thornburgh, president of the Committee of Seventy, an anti-corruption organization that considers the 2010 redistricting as one of the worst in the country’s history, according to an account in the Columbia Political Review. 

Supreme Court Justice Elena Kagan issued a warning in her dissent in the Rucho v. Common Cause case, in which the court majority ruled that gerrymandering claims lie outside the jurisdiction of federal courts.  

Justice Kagan stated, “Gerrymanders will only get worse (or depending on your perspective, better) as time goes on — as data becomes ever more fine-grained and data analysis techniques continue to improve,” she wrote in her dissent. “What was possible with paper and pen — or even with Windows 95 — doesn’t hold a candle to what will become possible with developments like machine learning. And someplace along this road, ‘we the people’ become sovereign no longer.”  

The optimistic view is that the tough work can be handed over to the machines to take over, with humans further removed from the equation. A state simply needs to establish objective criteria in a bipartisan manner, then turn it over to computers. But it turns out it is difficult to arrive at criteria for what constitutes a “fair” district.  

Brian Olson of Carnegie Mellon University is working on it, with a proposal to have computers prioritize districts that are compact and equally populated, using a tool called ‘Bdistricting.’ However, the authors of the Columbia Review account reported this has not been successful in creating districts that would have competitive elections.  

One reason is the political geography of the country includes dense, urban Democratic centers surrounded by sparsely-populated rural Republican areas. Attempts to take these geographic considerations into account have added so many variables and complexities that the solution becomes impractical.  

Shruti Verma, student at Columbia’s School of Engineering and Applied Sciences, studying computer science and political science

“Technology cannot, then, be trusted to handle the process of redistricting alone. But it can play an important role in its reform,” stated the author, Shruti Verma, a student at Columbia’s School of Engineering and Applied Sciences, studying computer science and political science.   

However, more tools are becoming available to provide transparency into the redistricting process to a degree not possible in the past. “This software weakens the ability of our state lawmakers to obfuscate,” she stated. “In this way, the very developments in technology that empowered gerrymandering can now serve to hobble it.”  

Tools are available from the Princeton Gerrymandering Project and the Committee of Seventy.  

University of Illinois Researcher Urges Transparency in Redistricting 

Transparency in the process of redistricting is also emphasized by researchers Wendy Tam Cho and Bruce Cain in the September 2020 issue of Science, who suggest that AI can help in the process. Cho, who teaches at the University of Illinois at Urbana-Champaign, has worked on computational redistricting for many years. Last year, she was an expert witness in a lawsuit by the ACLU that wound up in a finding that gerrymandered districts in Ohio were unconstitutional, according to a report in TechCrunch. Bruce Cain is a professor of political science at Stanford University with expertise in democratic representation and state politics.   

In an essay explaining their work, the two stated, “The way forward is for people to work collaboratively with machines to produce results not otherwise possible. To do this, we must capitalize on the strengths and minimize the weaknesses of both artificial intelligence (AI) and human intelligence.”  

And, “Machines enhance and inform intelligent decision-making by helping us navigate the unfathomably large and complex informational landscape. Left to their own devices, humans have shown themselves to be unable to resist the temptation to chart biased paths through that terrain.”  

In an interview with TechCrunch, Cho stated that while automation has potential benefits for states in redistricting, “transparency within that process is essential for developing and maintaining public trust and minimizing the possibilities and perceptions of bias.” 

Also, while the AI models for redistricting may be complex, the public is interested mostly in the results. “The details of these models are intricate and require a fair amount of knowledge in statistics, mathematics, and computer science but also an equally deep understanding of how our political institutions and the law work,” Cho stated. “At the same time, while understanding all the details is daunting, I am not sure this level of understanding by the general public or politicians is necessary.”

Harvard, BU Researchers Recommend a Game Approach 

Researchers at Harvard University and Boston University have proposed a software tool to help with redistricting  using a game metaphor. Called Define-Combine, the tool enables each party to take a turn in shaping the districts, using sophisticated mapping algorithms to ensure the approach is fair, according to an account in Fast Company.  

Early experience shows the Define-Combine procedure resulted in the majority party having a much smaller advantage, so in the end, the process produced more moderate maps.  

Related Posts

Novelty In The Game Of Go Provides Bright Insights For AI And Autonomous Vehicles
AI

Novelty In The Game Of Go Provides Bright Insights For AI And Autonomous Vehicles

We already expect that humans to exhibit flashes of brilliance. It might not happen all the time, but the act itself...

by aigroup
January 2, 2022
AI for the Life Sciences: A Consultant Weighs In on Best Practices
AI

AI for the Life Sciences: A Consultant Weighs In on Best Practices

Surely one of the most anticipated sessions at the Bio-IT World Conference & Expo each year is the Trends...

by aigroup
January 2, 2022
Executive Interview: Chuck Brooks, Cybersecurity Expert
AI

With Machine Learning, More Business Processes Will be Automated

Machine learning has the potential to automate many more business processes than are currently automated in enterprise software, based...

by aigroup
January 2, 2022
AI Analysis of Bird Songs Helping Scientists Study Bird Populations and Movements
AI

AI Analysis of Bird Songs Helping Scientists Study Bird Populations and Movements

A study of bird songs conducted in the Sierra Nevada mountain range in California generated a million hours of...

by aigroup
January 2, 2022

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Latest News

Novelty In The Game Of Go Provides Bright Insights For AI And Autonomous Vehicles
AI

Novelty In The Game Of Go Provides Bright Insights For AI And Autonomous Vehicles

by aigroup
January 2, 2022
0

We already expect that humans to exhibit flashes of brilliance. It might not happen all the time, but the act itself is...

Read more

AI for the Life Sciences: A Consultant Weighs In on Best Practices

With Machine Learning, More Business Processes Will be Automated

AI Analysis of Bird Songs Helping Scientists Study Bird Populations and Movements

Executive Interview: Chuck Brooks, Cybersecurity Expert

Latest Jobs

INTERMEDIATE DATA ENGINEER

Python Developer at Torilo Nigeria

Python Data Scientist at eHealth4everyone

Senior Backend Python Developer at SPACE44 GmbH

Full Stack Python / Django Software Engineer at Lendigo Nigeria – Seedstars

Data Scientist (Python) at Spark Wave

Forums

  • Artificial Intelligence
  • Career Path
  • Data Science
  • Job Interview
  • Power BI
  • Python

Recent Topics

  • Learn Machine ALgroithm
  • About us
  • Tutorials
  • Jobs
  • Events
  • Projects
  • Resources

© 2022 AIGroup

No Result
View All Result
  • About Us
  • Events
  • Jobs
  • Projects
  • Resources
  • Forum
    • Create Topic
  • Share Knowledge
  • Submit your Idea
  • Tutorials
  • Login/Logout
    • Edit Profile

© 2025 JNews - Premium WordPress news & magazine theme by Jegtheme.